Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth.

نویسندگان

  • Georg Mahlknecht
  • Ruth Maron
  • Maicol Mancini
  • Bilha Schechter
  • Michael Sela
  • Yosef Yarden
چکیده

Aptamers, oligonucleotides able to avidly bind cellular targets, are emerging as promising therapeutic agents, analogous to monoclonal antibodies. We selected from a DNA library an aptamer specifically recognizing human epidermal growth factor receptor 2 (ErbB-2/HER2), a receptor tyrosine kinase, which is overexpressed in a variety of human cancers, including breast and gastric tumors. Treatment of human gastric cancer cells with a trimeric version (42 nucleotides) of the selected aptamer (14 nucleotides) resulted in reduced cell growth in vitro, but a monomeric version was ineffective. Likewise, when treated with the trimeric aptamer, animals bearing tumor xenografts of human gastric origin reflected reduced rates of tumor growth. The antitumor effect of the aptamer was nearly twofold stronger than that of a monoclonal anti-ErbB-2/HER2 antibody. Consistent with aptamer-induced intracellular degradation of ErbB-2/HER2, incubation of gastric cancer cells with the trimeric aptamer promoted translocation of ErbB-2/HER2 from the cell surface to cytoplasmic puncta. This translocation was associated with a lysosomal hydrolase-dependent clearance of the ErbB-2/HER2 protein from cell extracts. We conclude that targeting ErbB-2/HER2 with DNA aptamers might retard the tumorigenic growth of gastric cancer by means of accelerating lysosomal degradation of the oncoprotein. This work exemplifies the potential pharmacological utility of aptamers directed at cell surface proteins, and it highlights an endocytosis-mediated mechanism of tumor inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted Disruption of β-Arrestin 2-Mediated Signaling Pathways by Aptamer Chimeras Leads to Inhibition of Leukemic Cell Growth

UNLABELLED β-arrestins, ubiquitous cellular scaffolding proteins that act as signaling mediators of numerous critical cellular pathways, are attractive therapeutic targets because they promote tumorigenesis in several tumor models. However, targeting scaffolding proteins with traditional small molecule drugs has been challenging. Inhibition of β-arrestin 2 with a novel aptamer impedes multiple ...

متن کامل

Targeting EGFR/HER2/HER3 with a Three-in-One Aptamer-siRNA Chimera Confers Superior Activity against HER2+ Breast Cancer

HER family members are interdependent and functionally compensatory. Simultaneously targeting EGFR/HER2/HER3 by antibody combinations has demonstrated superior treatment efficacy over targeting one HER receptor. However, antibody combinations have their limitations, with high immunogenicity and high cost. In this study, we have developed a three-in-one nucleic acid aptamer-small interfering RNA...

متن کامل

The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention.

Signal transduction mediated by ErbB/HER receptor tyrosine kinases is crucial for the development and maintenance of epithelial tissues, and aberrant signaling is frequently associated with malignancies of epithelial origin. This review focuses on the roles played by the Hsp90 chaperone machinery in the regulation of signaling through the ErbB/HER network, and discusses potential therapeutic st...

متن کامل

17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts.

PURPOSE Ansamycin antibiotics, including 17allylamino-17-demethoxygeldanamycin (17-AAG), inhibit Hsp90 function and cause the selective degradation of signaling proteins that require this chaperone for folding. Because mutations in the androgen receptor (AR) and activation of HER2 and Akt may account, in part, for prostate cancer progression after castration or treatment with antiandrogens, we ...

متن کامل

Advances in Brief 17-Allylamino-17-demethoxygeldanamycin Induces the Degradation of Androgen Receptor and HER-2/neu and Inhibits the Growth of Prostate Cancer Xenografts

Purpose: Ansamycin antibiotics, including 17allylamino-17-demethoxygeldanamycin (17-AAG), inhibit Hsp90 function and cause the selective degradation of signaling proteins that require this chaperone for folding. Because mutations in the androgen receptor (AR) and activation of HER2 and Akt may account, in part, for prostate cancer progression after castration or treatment with antiandrogens, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 20  شماره 

صفحات  -

تاریخ انتشار 2013